(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(0) → c1
ODD(s(0)) → c2
ODD(s(s(z0))) → c3(ODD(z0))
P(0) → c4
P(s(z0)) → c5
S tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(0) → c1
ODD(s(0)) → c2
ODD(s(s(z0))) → c3(ODD(z0))
P(0) → c4
P(s(z0)) → c5
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD, P
Compound Symbols:
c, c1, c2, c3, c4, c5
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
P(0) → c4
ODD(s(0)) → c2
ODD(0) → c1
P(s(z0)) → c5
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
S tuples:
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0), P(z0))
ODD(s(s(z0))) → c3(ODD(z0))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c3
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0) → cond(odd(z0), p(z0))
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0))
K tuples:none
Defined Rule Symbols:
cond, odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
cond(true, z0) → cond(odd(z0), p(z0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, z0) → c(COND(odd(z0), p(z0)), ODD(z0))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
z0) →
c(
COND(
odd(
z0),
p(
z0)),
ODD(
z0)) by
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, 0) → c(COND(false, p(0)), ODD(0))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, 0) → c(COND(false, p(0)), ODD(0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0), ODD(0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(0)) → c(COND(true, p(s(0))), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(0) → false
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
p(0) → 0
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(15) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(0) → 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:none
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
We considered the (Usable) Rules:
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND(x1, x2)) = x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0)) →
c(
COND(
odd(
s(
z0)),
z0),
ODD(
s(
z0))) by
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(0)) → c(COND(true, 0), ODD(s(0)))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), p(s(s(z0)))), ODD(s(s(z0))))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
z0))) →
c(
COND(
odd(
z0),
p(
s(
s(
z0)))),
ODD(
s(
s(
z0)))) by
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(0))) → c(COND(false, p(s(s(0)))), ODD(s(s(0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(25) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
We considered the (Usable) Rules:none
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [1]
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = [1]
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = 0
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(x0))) → c(COND(odd(x0), s(x0)), ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
We considered the (Usable) Rules:
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, 0) → c(COND(odd(0), 0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0) →
c(
COND(
odd(
0),
0)) by
COND(true, 0) → c(COND(false, 0))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c(COND(false, 0))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c(COND(false, 0))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(33) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, 0) → c
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c
(35) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, 0) → c
We considered the (Usable) Rules:none
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [1]
POL(ODD(x1)) = 0
POL(c) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = 0
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(0)) → c(COND(true, p(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, 0) → c
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
0)) →
c(
COND(
true,
p(
s(
0)))) by
COND(true, s(0)) → c(COND(true, 0))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(0)) → c(COND(true, 0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, 0) → c
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(0)) → c(COND(true, 0))
K tuples:
COND(true, s(z0)) → c(COND(odd(s(z0)), z0), ODD(s(z0)))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, 0) → c
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c
(39) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
COND(true, 0) → c
COND(true, s(0)) → c(COND(true, 0))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(41) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
z0))) →
c(
COND(
odd(
z0),
s(
z0)),
ODD(
s(
s(
z0)))) by
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(0))) → c(COND(false, s(0)), ODD(s(s(0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(0))) → c(COND(false, s(0)), ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(43) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(45) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
x0))) →
c(
COND(
odd(
x0),
s(
x0)),
ODD(
s(
s(
x0)))) by
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(0))) → c(COND(false, s(0)), ODD(s(s(0))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(0))) → c(COND(false, s(0)), ODD(s(s(0))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(47) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c
(49) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(0)))) → c(COND(true, p(s(s(s(0))))), ODD(s(s(s(0)))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1
(51) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
s(
0)))) →
c(
COND(
true,
p(
s(
s(
s(
0))))),
ODD(
s(
s(
s(
0))))) by
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c(COND(true, s(s(0))), ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1
(53) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(55) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
We considered the (Usable) Rules:none
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [2]
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [1]
POL(odd(x1)) = [2]
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = [1]
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(57) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
We considered the (Usable) Rules:
p(s(z0)) → z0
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), p(s(s(s(s(z0)))))), ODD(s(s(s(s(z0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(59) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
s(
s(
z0))))) →
c(
COND(
odd(
z0),
p(
s(
s(
s(
s(
z0)))))),
ODD(
s(
s(
s(
s(
z0)))))) by
COND(true, s(s(s(s(x0))))) → c(COND(odd(x0), s(s(s(x0)))), ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(0))))) → c(COND(false, p(s(s(s(s(0)))))), ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(0))))) → c(COND(false, p(s(s(s(s(0)))))), ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(x0))))) → c(COND(odd(x0), s(s(s(x0)))), ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(0))))) → c(COND(false, p(s(s(s(s(0)))))), ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(61) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(x0))))) → c(COND(odd(x0), s(s(s(x0)))), ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(63) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
We considered the (Usable) Rules:none
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = [1]
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = 0
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(x0))))) → c(COND(odd(x0), s(s(s(x0)))), ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(65) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
p(s(z0)) → z0
odd(s(s(z0))) → odd(z0)
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = x1 + x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [1]
POL(odd(x1)) = [1]
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = [1]
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(67) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(s(s(0)))))) → c(COND(true, p(s(s(s(s(s(0))))))), ODD(s(s(s(s(s(0))))))) by COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(69) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
We considered the (Usable) Rules:
odd(0) → false
odd(s(0)) → true
p(s(z0)) → z0
odd(s(s(z0))) → odd(z0)
And the Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2)) = x1 + x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [1]
POL(odd(x1)) = [1]
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = [1]
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
S tuples:
ODD(s(s(z0))) → c3(ODD(z0))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
ODD, COND
Compound Symbols:
c3, c, c, c1, c2
(71) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
ODD(
s(
s(
z0))) →
c3(
ODD(
z0)) by
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
(72) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(z0))) → c(COND(odd(z0), s(z0)), ODD(s(s(z0))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c1, c2, c3
(73) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
COND(true, s(s(s(0)))) → c1(ODD(s(s(s(0)))))
COND(true, s(s(s(0)))) → c(ODD(s(s(s(0)))))
COND(true, s(s(0))) → c(ODD(s(s(0))))
COND(true, s(s(s(0)))) → c2(ODD(s(s(s(0)))))
(74) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c1, c2, c3
(75) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
COND(
true,
s(
s(
x0))) →
c(
ODD(
s(
s(
x0)))) by
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
(76) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c1, c2, c3
(77) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
COND(
true,
s(
s(
x0))) →
c(
ODD(
s(
s(
x0)))) by
COND(true, s(s(s(s(y0))))) → c(ODD(s(s(s(s(y0))))))
(78) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
S tuples:
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0))))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c1, c2, c3
(79) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), p(s(s(s(s(s(s(z0)))))))), ODD(s(s(s(s(s(s(z0)))))))) by COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
(80) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
K tuples:
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
Defined Rule Symbols:
odd, p
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c1, c2, c3
(81) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(s(z0)) → z0
(82) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
K tuples:
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
Defined Rule Symbols:
odd
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c1, c2, c3
(83) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
We considered the (Usable) Rules:none
And the Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND(x1, x2)) = x2
POL(ODD(x1)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = 0
POL(odd(x1)) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(84) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
S tuples:
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
K tuples:
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
Defined Rule Symbols:
odd
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c1, c2, c3
(85) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
We considered the (Usable) Rules:none
And the Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND(x1, x2)) = [2]x22
POL(ODD(x1)) = x1
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(false) = [1]
POL(odd(x1)) = [2] + [2]x1
POL(s(x1)) = [2] + x1
POL(true) = [1]
(86) Obligation:
Complexity Dependency Tuples Problem
Rules:
odd(s(0)) → true
odd(s(s(z0))) → odd(z0)
odd(0) → false
Tuples:
COND(true, s(s(x0))) → c(ODD(s(s(x0))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(0)))) → c1(COND(true, s(s(0))))
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
S tuples:none
K tuples:
COND(true, s(s(s(0)))) → c2(COND(true, s(s(0))))
COND(true, s(s(s(s(x0))))) → c(ODD(s(s(s(s(x0))))))
COND(true, s(s(s(s(0))))) → c(ODD(s(s(s(s(0))))))
COND(true, s(s(s(s(z0))))) → c(COND(odd(z0), s(s(s(z0)))), ODD(s(s(s(s(z0))))))
COND(true, s(s(s(s(s(0)))))) → c(COND(true, s(s(s(s(0))))), ODD(s(s(s(s(s(0)))))))
COND(true, s(s(s(s(s(s(z0))))))) → c(COND(odd(z0), s(s(s(s(s(z0)))))), ODD(s(s(s(s(s(s(z0))))))))
ODD(s(s(s(s(y0))))) → c3(ODD(s(s(y0))))
Defined Rule Symbols:
odd
Defined Pair Symbols:
COND, ODD
Compound Symbols:
c, c, c1, c2, c3
(87) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(88) BOUNDS(1, 1)